
Máster Universitario en

Ingeniería Computacional y Sistemas Inteligentes

Konputazio Zientziak eta Adimen Artifiziala Saila –
Departamento de Ciencias de la Computación e Inteligencia Artificial

Master's Thesis

Deep learning review and its applications

Andoni Azkarate Saiz

Supervisor

Alicia d'Anjou d'Anjou
Department of Computer Science and Artificial Intelligence

Computer Science Faculty

Septiembre 2012

KZAA
/CCIA

K
I
S
A

I
C
S
I

Deep learning review and its applications

Andoni Azkarate

September 2015

Abstract

Deep neural networks have recently gained popularity for improv-

ing state-of-the-art machine learning algorithms in diverse areas such as

speech recognition, computer vision and bioinformatics. Convolutional

networks especially have shown prowess in visual recognition tasks such as

object recognition and detection in which this work is focused on. Mod-

ern award-winning architectures have systematically surpassed previous

attempts at tackling computer vision problems and keep winning most

current competitions. After a brief study of deep learning architectures

and readily available frameworks and libraries, the LeNet handwriting

digit recognition network study case is developed, and lastly a deep learn-

ing network for playing simple videogames is reviewed.

Keywords: deep learning, machine learning, arti�cial neural network,

visual recognition, object recognition, object mining, pattern recognition,

computer vision, convolutional neural network, ca�e

Contents

1 Introduction 4

2 Deep Learning overview 5

2.1 Types of machine learning . 5
2.2 Unsupervised learning as a deep learning facilitator 7
2.3 Problems when applying deep learning techniques 8
2.4 Good deep learning results in competitions 9

3 Frameworks for deep learning 10

3.1 Theano . 10
3.1.1 Libraries using Theano . 11

3.2 Torch . 12
3.3 Ca�e . 13

3.3.1 Use of pretrained models 14

2

4 Convolutional neural networks for visual object recognition 17

4.1 Overview . 17
4.2 Issues with traditional neural networks 18
4.3 The convolutional �lter . 19
4.4 Modern deep convolutional networks 21

5 LeNet example with ca�e 23

6 Deep learning use cases 27

6.1 Playing atari games . 27

7 Conclusions and future work 30

8 Appendix A - Ca�e description model of the LeNet network 34

3

1 Introduction

The �eld of arti�cial neural networks has progressed much since its creation in
the 1940s. Computational models of neural networks have been around for over
half a century, beginning with a simple model McCulloch and Pitts developed in
1943[1]. Following Donald Hebb's Hebbian learning, researchers began applying
these ideas to computational models in the late 1940s.

1957 saw the creation of the perceptron by Frank Rosenblatt, a type of binary
classi�er, which was used for pattern recognition based on a two-layer computer
learning network. However, following Marvin Minsky and Seymour Papert's
work that found issues in state-of-the-art computational neural models (issues
regarding to the impossibility of processing the XOR circuit and the expensive
processing power requirements) the �eld of arti�cial neural networks stagnated
until multilayered perceptrons were tried, now able to solve the XOR function.

In the 1970's Paul Werbos developed the backpropagation algorithm, and to-
gether with multiple layers of perceptron-like neurons such as the Neocognitron
the �eld of arti�cial neural networks blossomed again. This algorithm is an
abbreviation for �backward propagation of errors�, used in conjunction with an
optimization method such as gradient descent updates the weights of the neu-
rons in di�erent layers depending on the result of the loss function, the network's
measure of successful classi�cation, bringing the network closer to the desired
output; it is thus considered a supervised learning method. Nevertheless, the
more the layers the network has, the bigger the problem of vanishing gradient
gets.

Figure 1: A neural network that may sit inside a neural box performing machine
learning

From 1980s and on, di�erent architectures were researched and tried, some of
them were few layers deep, but some researches went on creating deep networks;
so the �eld of deep learning was born. The popularization of deep learning
however, came in around 2006 with Geo� Hinton, Yann LeCun and other's
publications around the topic of deep networks in machine learning[2, 3, 4].

4

2 Deep Learning overview

Deep learning is a branch of machine learning, an ensemble of learning tech-
niques and algorithms that usually employ non-linear transformation units (such
as arti�cial neurons or Restricted Boltzmann Machines) in a hierarchical layered
scheme. By means of learning algorithms, di�erent abstractions of input data
are learned from lower to higher abstraction, lower in layers near the input data,
higher in layers further away.

Deep learning research is mainly motivated by intuition, theoretical argu-
ments from circuit theory, empirical results, and current knowledge of neuro-
science. It is a growing trend in machine learning due to favorable results in
applications where the target function is complex and the datasets are large.
Informally speaking, deep learning methods extract some signi�cant structure
from a data set instead of doing fairly shallow or �at statistical inference on
structureless data representations such as vectors and matrices of values.

One key di�erence with other machine learning algorithms is its depth. Sup-
port Vector Machines, Naïve Bayes and Decision Trees are other machine learn-
ing techniques that are not very deep in terms of stacked layered units, thus they
are called shallow architectures. Shallow architectures apply less parameterized
transformations to input signals/data as it travels from the input to the output
layer. This chain of transformations is named Credit Assignment Path[5], and
the usual consensus is that a CAP > 2 means no longer a shallow network and
a CAP > 10 means very deep learning.

2.1 Types of machine learning

An important property of neural networks is that they should be teachable.
It's simple to show on a small scale how you can supply a series of example inputs
and expected outputs and go through a mechanical process to take the weights
from initial random values to progressively better numbers that produce more
accurate predictions. The problem is to do it in increasingly complex problems
such as image and speech recognition where required networks grow in size and
along with that the number of weights.

As deep learning is a sub�eld inside machine learning, it is convenient to cite
the types of learning that exist. The usual way of describing an algorithm of
machine learning is the supervised/unsupervised classi�cation depending of the
goals and the previously known information about input data.

• Supervised learning: it is the task of learning a classi�cation from previ-
ously known labeled data. The data consists of the input object and the
label or class the object belongs to. The supervised learning algorithm
uses the training data to produce a function that will map new examples.

5

In the best case scenario the algorithm correctly classi�es unseen instances
into their belonging classes.

Figure 2: Supervised learning �ow chart

• Unsupervised learning: it is the task of trying to �nd an underlying struc-
ture in unlabeled data. Cluster analysis is a common method that will
produce clusters of objects depending on the similarity with other object's
variables.

Figure 3: Unsupervised learning �ow chart

• Semi-supervised learning: when having a mixed set of labeled and unla-
beled data, usually a combination of unsupervised an supervised learning

6

algorithms.

• Reinforcement learning: it is the task of learning the correct output based
on input training data and a signal (reinforcement). It is usually used in
agents that need to take actions in an environment. This learning will
allow the agent to act in order to maximize a cumulative reward (positive
reinforcement), or minimize a penalty (negative reinforcement).

Figure 4: Reinforcement learning

2.2 Unsupervised learning as a deep learning facilitator

A key aspect of latest deep learning research that makes it di�erent from
previous multiple layer architectures is its e�ective feature extraction via initial
unsupervised learning. This receives di�erent names such as pre-training, initial
learning of features and representation learning and mimics the biological brain's
capability of extracting multiple levels of representation from sensory input[6].
It is usually carried out by traditional shallow unsupervised algorithms such as
RBMs1, SVMs2 or autoencoders.

By encoding the raw input data into a more compact and less redundant way,
the unsupervised phase of learning allows later layers to become smaller and
shallower than if the network was to deal with untreated data.

As cited earlier, previous multiple layered networks such as the multi-layer
perceptron su�ered some problems such as the exponentially escalating compu-
tational cost with the number of layers and the vanishing of the gradient along
the layers. Along this, most deep learning architectures are not fully connected
ones; they usually present some sparse connectivity among some of the layers,
whereas others may be fully connected feed-forward layers.

1Restricted Boltzmann Machine
2Support Vector Machine

7

2.3 Problems when applying deep learning techniques

Deep neural network share most of the issues of standard neural networks,
and solutions are proposed for each of these.

Vanishing gradient problem Also called the fundamental deep learning
problem, it happens because the gradient is unstable, tending to vanish in earlier
(nearer the input) layers because of the use of logistic sigmoid functions as acti-
vation functions in the neurons. As the derivative tends to 0 with extreme values
of input, it happens that the signal backpropagated to the previous layer gets
smaller, vanishes, and consequently the earliest layers learning rate is slowed.
The backpropagation algorithm works by �rst doing a forward pass through the
network to get the actual output and then propagating backwards the calcu-
lated error (delta) of the output, usually a mean squared error: E = 1

2 (t − y)2

where t is the target value and y is the actual output. Last, weights are updated
according to the gradient obtained multiplying the each neuron's input and it's
delta, usually multiplied by a percentage called the learning rate. Stochastic-
ity here means that all training samples are not used in each update, but only
randomly chosen one instead.

Several proposed solutions include the cited initial unsupervised learning,
LSTM-like3 networks, increasing computational power by means of modern
GPUs, Hessian-free optimization, and lastly searching the networks' space of
weights by means of optimization methods and heuristics. Most award winning
solutions nowadays employ GPUs combined with the unsupervised representa-
tion learning.

Over�tting This happens when the network is trained to the point of (al-
most) becoming and identity function of the input. This means the network is
over�tted to the data initially trained with and will usually perform poorly on
new unseen data. An intuitive explanation is that the weights of units become
too co-adapted to edges in the network (connections to next layers). With this
in mind the solution becomes simple actually: ignore the units with some prob-
ability with each of the training samples and then using the averaged weights
for new data.

3Long Short-Term Memory

8

Figure 5: 2 hidden layer neural network and the same network with some units
switched o�

This regularization technique is called dropout and breaks up these mentioned
co-adaptations by making the presence of particular hidden layer units in the
network unreliable. Although it may increase two or three times the time re-
quired for training the network it eventually reduces over�tting and improves
accuracy[7].

Computational cost Even though not fully connected, the computational
resources required for learning and also for later classi�cation tasks tend to be
very computationally expensive due to the high number of matrix operations
for the multiple layers of the network. This decade has seen a rise in the use of
massively parallel computing elements present in every computer: the GPU4.
Initially devised for the massively parallel calculations required by modern 3D
applications and especially 3D games, this hardware has shown to be well suited
for the parallel calculations also required by deep learning, reaching an average
20x speedup in execution times for common deep learning algorithms[8]. The
level of suppport and performance varies with di�erent frameworks and libraries
used when building deep learning systems, but most popular options do o�-
the-shelf support CUDA or OpenCL, two of the most used parallel computing
platform and APIs.

2.4 Good deep learning results in competitions

The use of deep learning architectures has improved the results of previous
algorithms in �elds such as speech recognition, genomics and object recognition.
From 2012 and onwards deep learning algorithms are present in top performers
and most of the winners of contests and benchmarks such as Kaggle, ImageNet,
NIST's OpenHaRT, TIMIT speech recognition, ICDAR Chinese handwriting
recognition benchmark or PASCAL object detection, and many recent com-
petitions have deep learning architectures pitted against themselves or similar

4Graphics Processing Unit or coloquially graphics card/chip

9

ones5.

The �elds deep learning techniques may be applied to is increasingly big as
data scientist start applying them for data and also for control.

3 Frameworks for deep learning

Deep learning can be applied to di�erent kind of problems, the most popular
being classi�cation and lately control and robotics. Even though the �eld of
deep learning is less than a decade old, there are already many frameworks and
libraries available for development purposes from where to choose from, with
varying levels of complexity, ease of use and requirements.

3.1 Theano

Theano is an open source project developed by the machine learning group at
Université de Montréal6, Yoshua Bengio being the most important researcher.
It is a numerical computation library for Python with heavy use of NumPy
syntax. It allows to de�ne, optimize and evaluate mathematical expressions
involving multi-dimensional arrays e�ciently. As stated on its inaugural paper,
"Theano is a compiler for mathematical expressions in Python that combines
the convenience of NumPy's syntax with the speed of optimized native machine
language". Cited advantages are:

• Tight integration with NumPy

• Transparent use of a GPU

• E�cient symbolic di�erentiation: does derivatives for function with one
or many inputs.

• Speed and stability optimizations.

• Dynamic C code generation � Evaluate expressions faster.

• Extensive unit-testing and self-veri�cation.

Following the tutorials a simple experiment is tried to check the performance
gain of GPU computation on available computer:

from theano import funct ion , con f i g , shared , sandbox
import theano . t enso r as T
import numpy
import time

5For a good compilation of achievements refer to [5], [9] and [10]
6http://deeplearning.net/software/theano

10

vlen = 10 ∗ 30 ∗ 768 # 10 x #cores x # threads per core
i t e r s = 1000

rng = numpy . random . RandomState (22)
x = shared (numpy . asar ray (rng . rand (v len) , c on f i g . f l oatX))
f = func t i on ([] , T. exp (x))
print f . maker . fgraph . toposo r t ()
t0 = time . time ()
for i in xrange (i t e r s) :
r = f ()
t1 = time . time ()
print ' Looping %d times took ' % i t e r s , t1 − t0 , ' seconds '
print ' Result i s ' , r

Hardware Avg. execution time
GPU 764ms
CPU 11305ms

Table 1: CPU vs GPU test

The results are averaged in three executions. It is noticeably faster, almost
15x increase in speed with the use of GPU computation. The hardware used is
an Intel i5-3570 CPU and a nVidia GeForce 660 GTX GPU in a 64 bits Windows
7 environment.

Theano is very used in academic environments but the use and de�nition of
tensors for most operations is not the most intuitive and can have a steep learn-
ing curve. Theano is not a programming language in the normal sense because
it involves writing a Python program which builds expressions for Theano. This
program is then compiled to special instruction sets, which can include CUDA
and OpenCL for GPU computation. Installing Theano and its dependencies is
not an easy process at the moment despite numerous tutorials, testing for errors
and learning curve seem to be prevalent issues among users[12] [13].

3.1.1 Libraries using Theano

Theano is used for researching and as a base for further building more user-
friendly libraries and frameworks. At the time of this writing, two promising
libraries using Theano are gaining some attention: Lasagne[14] and Blocks[15].
These two projects aim to make use of Theano's capabilities but presenting
them in an easier way.

Pylearn2 is another machine learning framework built with Theano as a base
and o�ers many deep learning methods readily implemented. It is one of the �rst

11

frameworks built on top of Theano, being a couple years old. However, as cited
on its published paper [17] "Pylearn2 is a machine learning research library
- its users are researchers. This means (. . .) it is acceptable to assume that
the user has some technical sophistication and knowledge of machine learning".
What this means is that the library is not for production environments, instead
knowledge about deep learning and writing some data wrappers in python are
required to be able to use it correctly. The main advantage of Pylearn2 is its
speed.

3.2 Torch

Using the LUA, a somewhat uncommon scripting language, Torch7, the latest
iteration of the Torch framework, provides a similar to MATLAB environment
for machine learning algorithms. Torch was developed as a numerical/scienti�c
computing extension of LuaJIT with an ML/neural net library on top by Yann
LeCun and his team at NYU. Internally developed in C, it can easily target
di�erent machine compilations[18]. Torch has a large ecosystem of community-
driven packages for machine learning, computer vision, signal processing and
networking among others, so its focus is not solely as a deep learning framework,
although a package exists for neural networks. A summary of features is:

• E�cient Tensor library (like NumPy) with an e�cient CUDA backend

• Numeric optimization routines

• Neural Networks package with fast CUDA and CPU backends

• Interface to C, via LuaJIT

• Good community and industry support - several hundred community-built
and maintained packages

• Easy to use Multi-GPU support and parallelizing neural networks

• Embeddable, with ports to iOS, Android and FPGA back-ends

Top companies are currently using Torch7 to develop deep learning solutions,
Google/Deepmind, Facebook and Twitter among others. The main advantages
cited are the e�ciency of FFT7 performed in convolutional nets (convnets)[19]
and availability of common deep learning algorithms. Here is some sample code
for a de�nition of handwritten digit recognition deep network architecture8:

net = nn . Sequent i a l ()
net : add (nn . Spat ia lConvo lut ion (1 , 6 , 5 , 5))
−− 1 input image channel , 6 output channels , 5x5 convo lu t i on ke rne l

7Fast Fourier Transform
8https://github.com/soumith/cvpr2015/blob/master/Deep%20Learning%20with%20Torch.ipynb

12

net : add (nn . SpatialMaxPool ing (2 , 2 , 2 , 2))
−− A max−poo l ing opera t ion t ha t l o o k s at 2x2 windows and
−− f i n d s the max .
net : add (nn . Spat ia lConvo lut ion (6 , 16 , 5 , 5))
net : add (nn . SpatialMaxPool ing (2 , 2 , 2 , 2))
net : add (nn . View (16∗5∗5))
−− reshapes from a 3D tensor o f 16 x5x5 in t o 1D tensor o f 16∗5∗5

net : add (nn . Linear (16∗5∗5 , 120))
−− f u l l y connected l a y e r (matrix mu l t i p l i c a t i o n between input
−− and we i gh t s)

net : add (nn . Linear (120 , 84))
net : add (nn . Linear (84 , 10))
−− 10 i s the number o f ou tpu t s o f the network (in t h i s case ,
−− 10 d i g i t s)

net : add (nn . LogSoftMax ())
−− conver t s the output to a log−p r o b a b i l i t y .
−− Use fu l f o r c l a s s i f i c a t i o n problems .

print (' Lenet5\n ' . . net : __tostring ()) ;

The code is pretty straightforward but input data processing must be coded,
this is only a de�nition of the neural network.

Similar to Theano, it is focused on developing and researching novel deep
learning network architectures, and using an uncommon language as LUA can
be hard to learn initially, distancing a bit the average user from the environment.
However, top software companies committing to its use is a sign of maturity of
the framework and there are useful guides available to install and use Torch7
[20].

3.3 Ca�e

A widely used machine vision library, it was developed by the BVCL9with
expression, speed, and modularity in mind. It also has a strong community of
contributors behind. Cited features are:

• Expressive modular architecture that de�nes models by con�guration and
not hard-coding.

• Extensible code easy to extend and contribute to.

• High speed, able to process 60 million ILSVRC2012 images per day[21]

9Berkeley Vision and Learning Center

13

• Community that extends to academic, startup and large-scale industrial
projects.

• Python and MATLAB bindings.

• A good array of pre-trained models: modelzoo10.

Its main applications are in computer vision, as image classi�cation mostly.
It is written in C++ with CUDA used for GPU computation and with bind-
ings to Python and MATLAB. As stated in its inaugural paper of 2014 [22]
it is very focused on providing a clear separation of model representation and
implementation, allowing easy research and experimentation on deep networks.

Figure 6: Ca�e compared to other popular frameworks[22]

As seen in �gure 6 ca�e prides itself to provide the most features of the
compared frameworks, and one of those is deemed to be very important as
described in the next subsection.

3.3.1 Use of pretrained models

The modularity and concern separation (as seen in object oriented program-
ming) of Ca�e, along with its popularity and portability, makes it an ideal plat-
form for testing and tweaking existing models. It is perhaps the best framework
to begin using existing deep learning networks, suchs as the publicly available
award-winning ones available on the modelzoo website. This allows not only
to experiment with the results of famous competitions as ImageNet, ILSVRC
or CIFAR, but to employ them on real world situations, industry being one of
the most bene�ted. Popular networks are named after their creators: AlexNet,
Ca�eNet, LeNet or GoogLeNet.

This feature, along with its popularity and no lack of important features
present in other frameworks to experiment with deep neural network is enough
to tip the scales in favor of the ca�e framework.

10http://ca�e.berkeleyvision.org/model_zoo.html

14

A simpli�ed LeNet[23] network is de�ned in Python code along with the
training and testing datasets in LMDB format, and then writen in two a human-
readable Google's protocol bu�er11 format con�guration �les named lenet_auto_train.prototxt
and lenet_auto_test.prototxt for training and testing respectively:

from c a f f e import l a y e r s as L
from c a f f e import params as P

def l e n e t (lmdb , batch_size) :
a simple ve r s i on o f LeNet
n = c a f f e . NetSpec ()
n . data , n . l a b e l = L . Data (batch_size=batch_size , backend=P. Data .LMDB,

source=lmdb ,
transform_param=dict (s c a l e =1./255) , ntop=2)
n . conv1 = L . Convolution (n . data , k e rne l_s i z e =5, num_output=20,

w e i g h t_ f i l l e r=dict (type=' xav i e r '))
n . pool1 = L . Pool ing (n . conv1 , ke rne l_s i z e =2, s t r i d e =2, pool=P. Pool ing .MAX)
n . conv2 = L . Convolution (n . pool1 , k e rne l_s i z e =5, num_output=50,

w e i g h t_ f i l l e r=dict (type=' xav i e r '))
n . pool2 = L . Pool ing (n . conv2 , ke rne l_s i z e =2, s t r i d e =2, pool=P. Pool ing .MAX)
n . ip1 = L . InnerProduct (n . pool2 , num_output=500 ,

w e i g h t_ f i l l e r=dict (type=' xav i e r '))
n . r e l u1 = L .ReLU(n . ip1 , in_place=True)
n . ip2 = L . InnerProduct (n . re lu1 , num_output=10,

w e i g h t_ f i l l e r=dict (type=' xav i e r '))
n . l o s s = L . SoftmaxWithLoss (n . ip2 , n . l a b e l)
return n . to_proto ()

with open(' examples /mnist / lenet_auto_train . pro to txt ' , 'w ') as f :
f . wr i t e (str (l e n e t (' examples /mnist /mnist_train_lmdb ' , 6 4)))

with open(' examples /mnist / lenet_auto_test . p ro to txt ' , 'w ') as f :
f . wr i t e (str (l e n e t (' examples /mnist /mnist_test_lmdb ' , 100)))

Next, the network's training and learning parameters are speci�ed in a similar
protocol bu�er �le, where parameters such as learning rate, optimization method
(SGD) and weight decay are speci�ed:

tra in_net : " examples /mnist / lenet_auto_train . p ro to txt "
test_net : " examples /mnist / lenet_auto_test . p ro to txt "
t e s t_ i t e r : 100
t e s t_ in t e r v a l : 500
base_lr : 0 .01
momentum : 0 .9
weight_decay : 0 .0005

11https://developers.google.com/protocol-bu�ers/?hl=en

15

l r_po l i cy : " inv "
gamma: 0 .0001
power : 0 .75
d i sp l ay : 100
max_iter : 10000
snapshot : 5000
snapshot_pre f ix : " examples /mnist / l e n e t "

And lastly, CPU or GPU usage may be speci�ed before executing the training:

#ca f f e . se t_dev ice (0)
#c a f f e . set_mode_gpu ()
c a f f e . set_mode_cpu ()
s o l v e r = c a f f e . SGDSolver (' examples /mnist / lenet_auto_solver . p ro to txt ')

for i t in range (n i t e r) :
s o l v e r . s t ep (1)

As seen, ca�e looks well as an initial approach to experimenting with deep
learning, not overly complex, with easy Python integration and with a lot of
readily available materials as networks and training sets by the community, and
also is seen in almost all top computer vision competitions.

16

4 Convolutional neural networks for visual ob-

ject recognition

Vision tasks fundamentally rely on the ability to recognize scenes, objects
and categories. Learning and matching visual objects is di�cult for a number
of reasons[24]:

• Variable illumination, pose, alignment, viewpoint...

• Variations among same category objects (brands of cars, cat breeds...)

• Variable backgrounds that may clutter the object

• Possible ambiguities

In summary, even the same identical object can cast an in�nite amount of
di�erent bidimensional projections onto the retina or camera sensor. Hence, high
robustness to these distortions is required for any good visual object recognition
system.

4.1 Overview

When it comes to computer vision and visual object recognition many tech-
niques have been tried in the past with increasing levels of success. Edge de-
tectors, template matching, Gabor �lters, Bag of Words, SIFT ,SURF... some
techniques involved some kind of learning, such as support vector machines, but
usually very shallow learning happened [25]. With the use of modern object
recognition architectures such as the deep convolutional neural network have
achieved great success in benchmarks, to the point of surpassing human accu-
racy levels [36]

Convolutional neural networks or convnets in short, were signi�cantly in-
vented and pushed forward by Yann LeCun from NYU and Joshua Bengio from
the Université de Montréal. A 1998 seminar paper summarizes his and his col-
leagues' work on document recognition and especially OCR12 or handwritten
letter recognition[27]. Three factors are cited as the reasons for advances in
object recognitionf:

• Availability of low-cost machines with fast arithmetic units allows for re-
liance on more brute-force �numerical� methods than on algorithmic re-
�nements.

• Availability of large databases for problems with a large market and wide
interest, such as handwriting recognition, allowing experimentation on
more real data.

12Optical Character Recognition

17

• Availability of powerful machine learning techniques that can handle high-
dimensional inputs and can generate intricate decision functions when fed
with these large data sets.

Figure 7: The two parts of pattern recognition

At the time convolutional neural networks were used to analyze bank cheque
letter and numbers that were written by hand. Previously, hand-crafted features
were used for patter recognition systems, and the paper showed that better
systems can be built by relying more on automatic learning and less on hand-
designed heuristics. This may sound familiar to the deep learning's successful
unsupervised feature learning, and it is, in fact, related.

4.2 Issues with traditional neural networks

The ability of multilayer networks such as the MLP13 trained with gradient
descent to learn complex, high-dimensional, nonlinear mappings from large col-
lections of examples makes them obvious candidates for image recognition tasks.
Nevertheless, as seen in the overview of deep learning issues arise with standard
MLP-like neural networks.

First, images being usually hundreds of pixels large, fully connected networks
�nd themselves with hundreds of thousands of weights in the �rst hidden layer.
Also, an important de�ciency with of these nets is that they have no built-
in invariance with respect to translations or distortions of the inputs. Before
being fed into the network, the input must be centered and size normalized.
Unfortunately, this preprocessing can never be perfect.

In relation to the distortions of the inputs, di�erent writing styles can be
assumed. This causes variations in the position of distinctive features of the

13Multi-layer Perceptron

18

input characters, vital for discriminating among them. In principle, a fully
connected network of su�cient size is able to learn to produce outputs that
are invariant with respect to such variations. However, learning such a task
would probably result in multiple units with similar weight patterns positioned
at various locations in the input in order to detect distinctive features wherever
they appear on the input (that common strike in the handwritten 7 number for
instance). Learning these weight con�gurations requires a very large number of
training instances to cover the space of possible variations.

The last issue of fully connected architectures is that the topology of the
input is ignored. The input variables can be presented in any (�xed) order
without a�ecting the outcome of the training. On the contrary, images have
a strong bidimensional local structure: variables (or pixels) that are spatially
or temporally nearby are highly correlated. Local correlations are the reasons
for the well-known advantages of extracting and combining local features before
recognizing spatial or temporal objects, because con�gurations of neighboring
variables can be classi�ed into a small number of categories (e.g., edges, corners,
etc.).

Summarizing, standard fully connected feed-forward neural network architec-
tures for visual image recognition:

• Increase size exponentially with the size of the input objects.

• Tend to learn similar weights in multiple locations of the weight space
because of the localization of features of same class objects.

• Ignore the topology of the input, where high correlations exist in nearby
pixels.

4.3 The convolutional �lter

A convolutional neural network is a specialized neural network architecture
incorporating knowledge about the invariances of bidimensional shapes by using
local connection patterns and imposing constraints on the weights.

A convolutional neural network overcomes the problems cited in the previous
paragraphs by tricks inspired by the study of biological visual systems[28]. It
uses a series of �lters that are repeatedly applied multiple times at di�erent
sub-regions of the image, thus, by convolution of the input image with a linear
�lter. These �lters share the same weights and are able to capture features from
the input image and learn in an unsupervised fashion. So, overcoming the three
problems cited:

• Convolutional networks have shared weights, thus less weights.

• Convolutional networks automatically obtain shift invariance by forcing
the replication of weight con�gurations across space.

19

• Convolutional networks force the extraction of local features by restricting
the receptive �elds of hidden units to be local.

Figure 8: The convolution �lter

The convolutional �lter works by convolving a kernel on the raw input image
and extracting a feature. As the �ltering is done in multiple subregions of the
image, a feature map is obtained. A single layer contains multiple convolutional
�lters of a certain size, 3x3 or 5x5 for example. The feature map is slightly
smaller in size due to this process. The exact values of the �lter are the weights
of the convolutional unit, and every convolutional �lter uses these same weights,
thus the weight sharing. These �lters could be typically used gaussian blur
kernels or gabor kernels in order to get a smoothed image or gradient features
of the original image. However, the goal of convolutional networks is not to use
pre-existing kernels but to learn set-speci�c �lters from training sets.

The second part of the layer is the subsampling �ltering. This reduces the
dimensionality of the features and helps increase the translation invariance of
the subsequent �lters[29]. Several methods can be used, 2x2 subsampling and
max-pooling being common.

The deep part of the network comes from stacking these layers several times.
The last layer of the convolutional networks is always a classifying layer, a
typical fully connected layer that outputs the category detected by the whole
network in terms of ouput unit activations. The �gure 9 shows a simple two
layer convolutional layer network.

20

Figure 9: The simple (by today standards) two convolution layer LeNet neural
network[23]

As seen, a convolutional neural network has many hyperparameters that are
left to the user's discretion:

• Number of �lters per convolutional layer

• Filter size and stride: 5x5, 3x3, 7x7 are common kernel sizes and 1 or 2
common strides14.

• Subsampling size and method: Maxpooling,

• Number of layers

These hyperparameters are often responsible for the success (or lack of thereof)
of convolutional neural network architectures. The best way of developing a ro-
bust object recognition system is to imitate the trends of recent successes in
competitions such as CIFAR-10 or ImageNet; these models are usually available
in the form of papers or downloadable trained models for ca�e in its modelzoo15.

4.4 Modern deep convolutional networks

The LeNet model seen in the previous section is over a decade old, but it is
still fundamentally the basis for modern award-winning deep convnets. It is a
�eld of ongoing research and gradual advances according to successes in object
recognition competitions as ImageNet or CIFAR-10. The �gure 10 shows the
results of modern convnets in past VOC challenges, they undoubtedly surpass
previous visual object recognition methods.

14Stride measures the distance between �ltered subregions
15http://ca�e.berkeleyvision.org/model_zoo.html

21

Figure 10: Modern deep convolutional network successes in the PASCAL Visual
Object Challenge[36]

22

5 LeNet example with ca�e

A tweaked LeNet network is designed and trained for classi�cation of the
MNIST handwritten digit set. The network is shown in �gure 12 and the listing
in Appendix A is the protocol bu�er ca�e format description of it. The network
has two convolutional layers with their subsampling, performed by max-pooling.
Max-pooling extracts the maximum value for a subregion and is useful because
of two reasons. First, it is a good subsampling technique because reduces com-
putation by eliminating non-maximal values for the subregions. Second, it helps
with the translation invariance.

Figure 11: 2x2 subregion max-pooling compared to average-pooling

Figure 12: Another look at the LeNet convolutional network[23]

By means of the straightforward python and ca�e interaction, courtesy of the
pyca�e project, experimenting and visualizing all the training and evaluation
processes of the LeNet is quite simple. First, the MNIST training and test data
sets are downloaded and converted into LMDB16 format by means of a shell
script. This format is useful when dealing with datasets, as it is o�ers good
performance for reading and writing key-value pairs.

16Lightning Memory-Mapped Database

23

These two datasets are fed into the network as speci�ed in the learning pa-
rameters �le, also listed in Appendix A. It is possible to visualize the �rst two
elements of each dataset thanks to python's image visualizing tools:

Figure 13: First 8 training (top) and testing (bottom) inputs

Afterwards, a single minibatch of 100 input values training is performed and
�rst convolutional �lters visualized in order to check the training is taking place.
Batch training approximates the gradient of multiple values (100 in this case),
thereby reducing some of the noise that happens when updating every single
input value.

Figure 14: Conv1 layer visualization

This means that learning is being done and the convolutional layers are learn-
ing their �lters (weights). 200 minibatch iterations are performed for a total
200 000 training images shown to the network. The test set is used to see check
the accuracy of the network.

24

Figure 15: Accuracy (red, right axis) and train loss (blue, left axis) across 200
minibatch iterations

Lastly, every 25 iterations the �rst training set is checked to see the gradual
improvements to the neural network. Brighter means higher activation values
for the output neurons. Figure 16 shows the accuracy with same three input
digits across the 10 output units. This can be interpreted as 7 and 1 being easily
classi�ed correctly whereas withe the digit 2 the network's con�dence is lower.

25

Figure 16: 3 input accuracy across the training iterations

26

6 Deep learning use cases

This section will present two examples of state-of-the-art deep learning use
cases. The �rst one belongs to a AI research company recently purchased by
Google for $400 million17, and the second one is small trial performed in col-
laboration with Ibermatica for image recognition and location in aerial drone
images. Reviewing these two deep learning applications helps gaining under-
stand of the detailed inner workings of convolutional neural networks used in
both cases, along with many other implementation details necessary in order to
successfully apply deep learning methods in any domain.

6.1 Playing atari games

Google's recent success in the area of reinforcement learning with deep neural
networks is an interesting case. The task to develop intelligent agents acting in a
virtual environment is not an easy one, especially if the environment consists of
decades old videogames' emulator. In this case, the access to the environment is
done solely via visual recognition; the agent has no access to the emulated mem-
ory or any other variables other than those a human player would have standing
in front of the atari videogames console. This is an important constraint and
demonstrates improving levels of intelligence and visual recognition.

Google's recently purchased Deepmind London-based AI company [30], has
recently succeeded in showing a system with human-level pro�ciency at playing
simple videogames. The model is a convolutional neural network, trained with
a variant of Q-learning, whose input is raw pixels and whose output is a value
function estimating future rewards[31]. This kind of reinforcement learning
is di�erent from most classi�cation problems; most deep learning algorithms
assume independent data samples, whereas in reinforcement learning there are
frequently sequences of highly correlated states. Also, as the intelligent agent
interacts with the evironment, data distribution changes as the algorithm learns
new behaviors.

Figure 17: Screenshots of �ve of the Atari 2600 games tested

Focusing on the visual recognition part of the architecture, a raw atari game
outputs 210x160 pixel images with a 128 color palette to the screen. Dimen-

17http://www.technologyreview.com/news/524026/is-google-cornering-the-market-on-
deep-learning/

27

sionality is reduced for decreasing the computational demand, down to a 110x84
grayscale image and then cropping it to a square 84x84 region that roughly cap-
tures the playing area[33, 34]. Two convolutional layers are used, the �rst one
with 16 8x8 �lters with a step size of 4, producing 16 20x20 feature maps, and
the second consists in 32 4x4 �lters with a step size of 2, yielding 32 9x9 values.
The last two layers are traditional fully connected ones. The output layer is a
unit per possible 18 actions in the game: 8 directions or a 9th no direction, with
a possible button press.

Figure 18: Deep Q learning algorithm

Figure 19: A deep Q network can be trained by minimizing L loss functions
that change at each i iteration. Di�erentiating with respect to the weights the
shown gradient is arrived at.

28

Figure 20: The details of the convolutional neural network[34]

The results are quite impressive: out of 47 games tested, the algorithm
achieves more than the 75% of the human score on 29 games. The games are
varied in their nature, from side scrollers to pseudo-3D racing games and boxing
games. In some of the games such as breakout, the the deep Q network is able
to discover long-term strategies. The network, however, fails to achieve good
performance in games requiring more temporally extended planning strategies.
The algorithm also outperforms past algorithms.

29

7 Conclusions and future work

This work has summarized the current state of the art of convolutional neural
network and has shown two applications, the original handwritting digit recog-
nition for which the LeNet architecture was �rst designed, and one of the most
modern examples, Google's Atari-playing AI which gained widespread attention
this last year.

It has been shown that deep neural networks not only promise good results in
theory, overcoming many problems of traditional feed-forward neural networks,
they do deliver and surpass other algorithms in competitions thanks to their
abstraction capabilities.

Increasing computational power thanks to Moore's law and the devise of bet-
ter and better algorithms such as the convolutional �lters combined in deep
architectures, seem to hold the key for even better results in the short term
future.

In more practical matters, applying modern award-winning architectures to
visual recognition problems would be the next step, testing in the process the
e�ectiveness of modern deep learning enhancing hardware such as GPUs. Di�er-
ent architectures could be tried and compared for their performance, computa-
tional cost and other factors. The simplicity the ca�e framework provides when
it comes to download, test and tweak pretrained models is a positive impact in
any future work.

The potential of making sense about images can be used to train networks
to recognize physical objects from video and images. Due to the training and
computational cost of using deep neural networks, a study of their performance
according to di�erent hardware is needed in order to ascertain their usefulness
in on-line environments where other shallow algorithms are common.

Object location is another possible future work. As convolutional architec-
tures work well identifying and classifying objects, their position on the input
images must be worked out in an external way, probably by computing bound-
ing boxes and feeding di�erent image regions to the network, resulting in an
object locator architecture. See [37] and [38] for current work on this subject.

30

References

[1] McCulloch, Warren; Walter Pitts (1943). "A Logical Calculus of Ideas Im-
manent in Nervous Activity". Bulletin of Mathematical Biophysics 5 (4)

[2] Hinton, G. E., Osindero, S. and Teh, Y., A fast learning algorithm for deep
belief nets Neural Computation 18:1527-1554, 2006

[3] Yoshua Bengio, Pascal Lamblin, Dan Popovici and Hugo Larochelle, Greedy
Layer-Wise Training of Deep Networks, in J. Platt et al. (Eds), Advances in
Neural Information Processing Systems 19 (NIPS 2006), pp. 153-160, MIT
Press, 2007

[4] Marc'Aurelio Ranzato, Christopher Poultney, Sumit Chopra and Yann Le-
Cun E�cient Learning of Sparse Representations with an Energy-Based
Model, in J. Platt et al. (Eds), Advances in Neural Information Processing
Systems (NIPS 2006), MIT Press, 2007

[5] Schmidhuber, Juergen. �Deep Learning in Neural Networks: An Overview�.
Neural Networks, Vol 61, pp 85-117, Jan 2015 http://arxiv.org/abs/1404.7828

[6] Hinton, Geo�rey E. "Learning multiple layers of representation." Trends in
cognitive sciences 11.10 (2007): 428-434.

[7] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov,
R. (2014). Dropout: A simple way to prevent neural networks from over�tting.
The Journal of Machine Learning Research, 15(1), 1929-1958.

[8] GPU for Deep Learning Algorithm - http://www.cs.rochester.edu/ yli/�les/report-
gpu.pdf

[9] Deep Learning Successes Obtained by IDSIA -
http://deeplearning.net/2013/10/08/deep-learning-successes-obtained-
by-idsia/

[10] Deep Learning's Accuracy - http://deeplearning4j.org/accuracy.html

[11] Bergstra, James, et al. "Theano: A CPU and GPU math compiler in
Python." Proc. 9th Python in Science Conf. 2010.

[12] https://www.quora.com/What-is-it-like-to-use-Theano-in-Python

[13] https://www.reddit.com/r/MachineLearning/comments/2c9x0s/best
_framework_for_deep_neural_nets/

[14] Lasagne home site - https://github.com/Lasagne/Lasagne

[15] Bart van Merriënboer, Dzmitry Bahdanau, Vincent Dumoulin, Dmitriy
Serdyuk, David Warde-Farley, Jan Chorowski, and Yoshua Bengio, "Blocks
and Fuel: Frameworks for deep learning," arXiv preprint arXiv:1506.00619
[cs.LG], 2015.

31

[16] Pylearn2 in practice - http://fastml.com/pylearn2-in-practice/

[17] Goodfellow, I. J., Warde-Farley, D., Lamblin, P., Dumoulin, V., Mirza, M.,
Pascanu, R., ... & Bengio, Y. (2013). Pylearn2: a machine learning research
library. arXiv preprint arXiv:1308.4214.

[18] http://torch.ch/

[19] https://research.facebook.com/blog/879898285375829/fair-open-sources-
deep-learning-modules-for-torch/

[20] "Getting Started with Torch7" - http://code.madbits.com/wiki/doku.php?id=tutorial_basics

[21] " Ca�e Performance and Hardware Con�guration" -
http://ca�e.berkeleyvision.org/performance_hardware.html

[22] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
... & Darrell, T. (2014, November). Ca�e: Convolutional architecture for fast
feature embedding. In Proceedings of the ACM International Conference on
Multimedia (pp. 675-678). ACM.

[23] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel. Backpropagation applied to handwritten zip code
recognition. Neural Comput., 1(4):541�551, December 1989.

[24] Pinto N, Cox DD, DiCarlo JJ (2008) Why is Real-World Vi-
sual Object Recognition Hard? PLoS Comput Biol 4(1): e27.
doi:10.1371/journal.pcbi.0040027

[25] Grauman, K., & Leibe, B. (2010). Visual object recognition (No. 11). Mor-
gan & Claypool Publishers.

[26] "The Revolutionary Technique That Quietly Changed Ma-
chine Vision Forever" MIT Technology Review 2014 -
http://www.technologyreview.com/view/530561/the-revolutionary-
technique-that-quietly-changed-machine-vision-forever/

[27] LeCun, Y., Bottou, L., Bengio, Y., & Ha�ner, P. (1998). Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11),
2278-2324.

[28] Matsugu, M., Mori, K., Mitari, Y., & Kaneda, Y. (2003). "Subject in-
dependent facial expression recognition with robust face detection using a
convolutional neural network" (PDF). Neural Networks 16 (5): 555�559.
doi:10.1016/S0893-6080(03)00115-1.

[29] Scherer, D., Müller, A.,& Behnke, S. (2010). Evaluation of pooling opera-
tions in convolutional architectures for object recognition. In Arti�cial Neural
Networks�ICANN 2010 (pp. 92-101). Springer Berlin Heidelberg.

32

[30] "Google buys UK arti�cial intelligence startup Deepmind for ¿400m" The
Guardian - http://www.theguardian.com/technology/2014/jan/27/google-
acquires-uk-arti�cial-intelligence-startup-deepmind

[31] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wier-
stra, D., & Riedmiller, M. (2013). Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602.

[32] Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning, 8(3-4),
279-292.

[33] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,
M. G., ...& Hassabis, D. (2015). Human-level control through deep reinforce-
ment learning. Nature, 518(7540), 529-533.

[34] Korjus, K., Kuzovkin, I., Tampuu, A., & Pungas, T. Replicating the Paper
�Playing Atari with Deep Reinforcement Learning�[MKS.

[35] Ciresan, D., Meier, U., & Schmidhuber, J. (2012, June). Multi-column deep
neural networks for image classi�cation. In Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on (pp. 3642-3649). IEEE.

[36] Pierre Sermanet, Google Research - Object Detection with Deep Learning
http://bigdata.memect.com/?p=11488

[37] Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014, June). Rich
feature hierarchies for accurate object detection and semantic segmentation.
In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference
on (pp. 580-587). IEEE.

[38] "R-CNN: Regions with Convolutional Neural Network Features" - GitHub
- https://github.com/rbgirshick/rcnn

33

8 Appendix A - Ca�e description model of the

LeNet network

l a y e r {
name : "data"
type : "Data"
top : "data"
top : " l a b e l "
transform_param {

s c a l e : 0 .00392156862745
}
data_param {

source : " examples /mnist /mnist_train_lmdb"
batch_size : 64
backend : LMDB

}
}
l ay e r {

name : "conv1"
type : "Convolution "
bottom : "data"
top : "conv1"
convolution_param {

num_output : 20
ke rne l_s i z e : 5
w e i g h t_ f i l l e r {

type : " xav i e r "
}

}
}
l ay e r {

name : " pool1 "
type : " Pool ing "
bottom : "conv1"
top : " pool1 "
pooling_param {

pool : MAX
kerne l_s i z e : 2
s t r i d e : 2

}
}
l ay e r {

34

name : "conv2"
type : "Convolution "
bottom : " pool1 "
top : "conv2"
convolution_param {

num_output : 50
ke rne l_s i z e : 5
w e i g h t_ f i l l e r {

type : " xav i e r "
}

}
}
l ay e r {

name : " pool2 "
type : " Pool ing "
bottom : "conv2"
top : " pool2 "
pooling_param {

pool : MAX
kerne l_s i z e : 2
s t r i d e : 2

}
}
l ay e r {

name : " ip1 "
type : " InnerProduct "
bottom : " pool2 "
top : " ip1 "
inner_product_param {

num_output : 500
we i g h t_ f i l l e r {

type : " xav i e r "
}

}
}
l ay e r {

name : " r e l u1 "
type : "ReLU"
bottom : " ip1 "
top : " ip1 "

}
l ay e r {

name : " ip2 "
type : " InnerProduct "
bottom : " ip1 "
top : " ip2 "

35

inner_product_param {
num_output : 10
we i g h t_ f i l l e r {

type : " xav i e r "
}

}
}
l ay e r {

name : " l o s s "
type : "SoftmaxWithLoss"
bottom : " ip2 "
bottom : " l a b e l "
top : " l o s s "

}

The l ea rn ing parameters l i s t i n g :

tra in_net : " examples /mnist / lenet_auto_train . p ro to txt "
test_net : " examples /mnist / lenet_auto_test . p ro to txt "
t e s t_ i t e r s p e c i f i e s how many forward passes the t e s t shou ld carry out .
In the case o f MNIST, we have t e s t ba tch s i z e 100 and 100 t e s t i t e r a t i o n s ,
cover ing the f u l l 10 ,000 t e s t i n g images .
t e s t_ i t e r : 100
Carry out t e s t i n g every 500 t r a i n i n g i t e r a t i o n s .
t e s t_ in t e r v a l : 500
The base l e a rn ing rate , momentum and the we igh t decay o f the network .
base_lr : 0 .01
momentum : 0 .9
weight_decay : 0 .0005
The l ea rn ing ra t e p o l i c y
l r_po l i cy : " inv "
gamma: 0 .0001
power : 0 .75
Disp lay every 100 i t e r a t i o n s
d i sp l ay : 100
The maximum number o f i t e r a t i o n s
max_iter : 10000
snapshot in t e rmed ia t e r e s u l t s
snapshot : 5000
snapshot_pre f ix : " examples /mnist / l e n e t "

36

